
1
Krestfield EzSign .NET Client Integration Guide

Krestfield EzSign

.NET Client Integration Guide
Version 4.0

Copyright Krestfield 2020

Introduction

The Krestfield EzSign Client is a lightweight .NET package which interfaces with the EzSign Server

enabling applications to quickly generate and verify digital signatures or encrypt and decrypt data without

the need for complex programming

The client also provides utilities to hash data, supporting both SHA-1 and the SHA-2 range of hash

algorithms

This guide details the steps required to integrate the client into applications and make use of the API

For server side setup, please refer to the EzSign Installation and Configuration Guide

Library

The client consists of the following library files:

• EzSignClient.dll

• EzSignClientUtils.dll

These are located at [installation folder]\DotNetClient\lib

Where [installation folder] is the location the server was installed

To make use of the signing, verification and encryption functions, add a reference to the

EzSignClient.dll file from your project

To make use of the hashing utilities, add a reference to the EzSignClientUtils.dll file from your

project

2
Krestfield EzSign .NET Client Integration Guide

Client API

The API to the EzSign client has intentionally been kept simple. Decisions on which keys to use, what

certificates to include in signatures and what hashing algorithms to use are configured at the server level

All the client API calls are included in the EzSignClient class, which is included in the

com.krestfield.ezsign.client namespace

Constructor

The constructor is defined as:

public EzSignClient(String host, int port)

Where:

host is the EzSign Server hostname (or IP Address)

Port is the EzSign Server listening port number

The default connection timeout to the server is 5 seconds (5000 milliseconds). But this can be overridden

by using the following constructor:

public EzSignClient(String host, int port,

 int timeoutInMs, int readTimeoutInMs)

Where:

timeoutInMs is the connection timeout expressed in milliseconds

readTimeoutInMs is the read timeout expressed in milliseconds

Example:

using com.krestfield.ezsign.client;

namespace App1
{
 class Program
 {
 static void Main(string[] args)
 {
 EzSignClient client = new EzSignClient("10.100.56.11", 5656);

 }
 }
}

3
Krestfield EzSign .NET Client Integration Guide

If the communications between the client and server are to be secured, an Authentication Code may be

used. The Authentication Code is provided by using one of the following constructors:

public EzSignClient(String host, int port, String authCode)

public EzSignClient(String host, int port,

 int timeoutInMs, int readTimeoutInMs, String authCode)

This will result in the encryption of the traffic between the client and server

There are no restrictions on what Authentication Code can be used, but a longer more complex code will

increase security

The same Authentication Code must also be configured on the server. Refer to the Installation and

Configuration Guide for details on how to configure this on the server

Generate Signature Methods

The following method is called to generate a signature:

public byte[] signData(String channelName, byte[] dataToSign,

 bool isDigest)

The signature returned is dependent on the signature type specified at the server and will be either a

PKCS#7 formatted signature or a raw PKCS#1 signature

Note: For large data sets, it is recommended to hash the data beforehand and provide this as the

dataToSign together with isDigest=true. This prevents large amounts of data being passed

between the client/server interface. Note: The client utils can be used to generate the required hash

This method throws the following exceptions:

KSigningException

 There was an error during the signing process

KEzSignException

 There was an internal error, incorrect parameters or other error

KEzSignConnectException

 There was an error connecting to the server

4
Krestfield EzSign .NET Client Integration Guide

Example:

byte[] dataToSign = Encoding.ASCII.GetBytes("Data to sign");

byte[] signature = client.signData("SIGNCHANNEL", dataToSign, false);

Verify PKCS#7 Signature Methods

The following methods are used to verify a PKCS#7 signature and will perform the required path building

and revocation checking as configured at the server

Verifying Signature 1

public void verifySignature(String channelName, byte[] signature,

 byte[] contentBytes, bool dataIsDigest)

If contentBytes is a hash of the data then dataIsDigest must be true, otherwise false

This method throws the following exceptions:

KVerificationException

 There was an error during the verification process

KPathException

 There was a path building error

KRevocationException

 A certificate is revoked or there was an error during the revocation check process

KEzSignConnectException

 There was an error connecting to the server

KEzSignException

 There was another error

5
Krestfield EzSign .NET Client Integration Guide

Example:

try
{
 client.verifySignature("SIGNCHANNEL", signature, dataToVerify, false);

 Console.Out.WriteLine("Signature verified!");
}
catch (KEzSignException generalEx)
{
 Console.Out.WriteLine("There was an error calling the verify function: " +
 generalEx.Message);
}
catch (KVerificationException verifyEx)
{
 Console.Out.WriteLine("There was a signature verification error: " +
 verifyEx.Message);
}
catch (KPathException pathEx)
{
 Console.Out.WriteLine("There was a path building error: " + pathEx.Message);
}
catch (KRevocationException revEx)
{
 Console.Out.WriteLine("There was a revocation check error: " + revEx.Message);
}

Verifying Signature 2

This method allows for the by-passing of revocation checking and the by-passing of path building i.e. only

a simple verification check will be performed to confirm the data was signed by the certificate specified in

the signature and has not been altered

public void verifySignature(String channelName, byte[] signature,

byte[] contentBytes, bool dataIsDigest,

bool bypassRevocationCheck, bool bypassPathBuild)

If the values for bypassRevocationCheck and bypassPathBuild are both set to false the signature

will be verified in the same way as the previous method

This method throws the following exceptions:

KVerificationException

 There was an error during the verification process

KPathException

 There was a path building error

KRevocationException

 A certificate is revoked or there was an error during the revocation check process

6
Krestfield EzSign .NET Client Integration Guide

KEzSignConnectException

 There was an error connecting to the server

KEzSignException

 There was another error

Verify Raw Signature Methods

The following methods are used to verify Raw (PKCS#1) signatures and will perform the required path

building and revocation checking as configured at the server

Verifying Raw Signature 1

Note that as a PKCS#1 signature does not contain the signer certificate, this must be provided

If there are other certificates in the path that are not stored in the channel, use the Verify Raw Signature 2

method. Path building and revocation checking (if configured at the server) will be performed

public void verifySignature(String channelName, byte[] signature,

byte[] contentBytes, bool dataIsDigest,

X509Certificate signerCert)

This method throws the following exceptions:

KVerificationException

 There was an error during the verification process

KPathException

 There was a path building error

KRevocationException

 A certificate is revoked or there was an error during the revocation check process

KEzSignConnectException

 There was an error connecting to the server

KEzSignException

 There was another error

Verifying Raw Signature 2

This method accepts the signer certificate as well as other certificates in the path. Path building and

revocation checking (if configured at the server) will be performed

public void verifySignature(String channelName, byte[] signature,

byte[] contentBytes, bool dataIsDigest,

X509Certificate signerCert,

X509Certificate[] otherCerts)

7
Krestfield EzSign .NET Client Integration Guide

This method throws the following exceptions:

KVerificationException

 There was an error during the verification process

KPathException

 There was a path building error

KRevocationException

 A certificate is revoked or there was an error during the revocation check process

KEzSignConnectException

 There was an error connecting to the server

KEzSignException

 There was another error

Verifying Raw Signature 3

Use this method if you wish to bypass revocation checking (whether configured at the server or not)

and/or path building

public void verifySignature(String channelName, byte[] signature,

byte[] contentBytes, boolean dataIsDigest,

X509Certificate signerCert,

X509Certificate[] otherCerts,

bool bypassRevocationCheck, bool bypassPathBuild)

This method throws the following exceptions:

KVerificationException

 There was an error during the verification process

KPathException

 There was a path building error

KRevocationException

 A certificate is revoked or there was an error during the revocation check process

KEzSignConnectException

 There was an error connecting to the server

KEzSignException

 There was another error

Note:

otherCerts can be null if you do not wish to specify any other certificates in the path

8
Krestfield EzSign .NET Client Integration Guide

If you wish to perform just the signature verification operation. Set bypassRevocationCheck and

bypassPathBuild both to true and otherCerts to null

Generate Random Number Methods

The following method is called to generate random data:

public byte[] generateRandomBytes(String channelName, int numBytes)

The number of random bytes selected will be returned

This method throws the following exceptions:

KEzSignConnectException

 There was an error connecting to the server

KEzSignException

 There was another error

9
Krestfield EzSign .NET Client Integration Guide

Encrypt/Decrypt Methods

These methods provide encryption and decryption using AES keys previously generated on the server.

The algorithm used is AES with CBC (Cipher Block Chaining) and PKCS#5 padding. A random IV

(Initialisation Vector) is created every time data is encrypted and this IV is placed in the first 16 bytes of

the returned data, with the remaining bytes being the encrypted data itself

The following method is called to encrypt data:

public byte[] encryptData(String channelName, byte[] dataToEncrypt,

 String keyLabel)

This will encrypt the clear data contained in dataToEncrypt using the key referenced by keyLabel and

return the encrypted data

keyLabel must refer to a key which has previously been generated on the server using the management

utility. If the key does not exist KEncipherException will be thrown

This method throws the following exceptions:

KEncipherException

 There was an error whilst encrypting the data

KEzSignConnectException

 There was an error connecting to the server

KEzSignException

 There was another error

The following method is called to decrypt previously encrypted data:

public byte[] decryptData(String channelName, byte[] encryptedData,

 String keyLabel)

This will decrypt data previously encrypted with the encryptData method using the key referenced by

keyLabel and return the clear data

keyLabel must refer to a key which has previously been generated on the server using the management

utility. If the key does not exist KEncipherException will be thrown

10
Krestfield EzSign .NET Client Integration Guide

This method throws the following exceptions:

KEncipherException

 There was an error whilst decrypting the data

KEzSignConnectException

 There was an error connecting to the server

KEzSignException

 There was another error

Example:

try
{
 byte[] originalClearData = Encoding.ASCII.GetBytes("Encrypt this");

 byte[] encryptedData = client.encryptData("ENCRYPTCHAN", originalClearData,
 "encryptkey1");
 byte[] clearData = client.decryptData("ENCRYPTCHAN", encryptedData,
 "encryptkey1");
}
catch (KEzSignException generalEx)
{
 Console.Out.WriteLine("There was an error calling the EzSign server: " +
 generalEx.Message);
}
catch (KEncipherException encipherEx)
{
 Console.Out.WriteLine("There was an error encrypting/decrypting data: " +
 encipherEx.Message);
}

11
Krestfield EzSign .NET Client Integration Guide

Client Utils API

The Client Utilis API calls are included in the KHash class

This class is contained in the KEzSignClientUtils.dll file and held in the

com.krestfield.ezsign.client.utils namespace

KHash

This class contains the following methods for the generation of hashes:

public KHash(String hash)

The constructor can be passed the hash algorithm as a string. Accepted values are SHA-1, SHA-

256, SHA-384 and SHA-512

public byte[] digest(byte[] data)

This method calculates the hash value over all the data provided and returns the hash value

public void update(byte[] data)

Sections or slices of data can be provided as received or processed and will be included in the

overall hash generated

public void doFinal(byte[] data)

If the update method has been called, when this method is called together with the last piece of

data to be hashed, the hash over all the data will be calculated and returned

public void reset()

This resets the internal buffer allowing the same object to be used to calculate a hash over fresh

data

12
Krestfield EzSign .NET Client Integration Guide

Support

All questions, queries around the API described within this document should be directed to Krestfield

Support at the following email address:

support@krestfield.com

Or visit our site at

https://www.krestfield.com

	Introduction
	Library
	Client API
	Constructor
	Generate Signature Methods
	Verify PKCS#7 Signature Methods
	Verify Raw Signature Methods
	Generate Random Number Methods
	Encrypt/Decrypt Methods

	Client Utils API
	KHash

	Support

